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Abstract
The spectral representation is an efficient tool to explore electrical properties of
material mixtures. It separates the contributions of geometrical topology and
intrinsic properties of the constituents in the system. The aim of this letter is
to derive an expression for the spectral density representation, which favours
dielectric relaxation phenomenon. This unfamiliar form is distinct in that the
existing dielectric relaxation models and data analysis tools can be employed
for extracting the spectral density function of a given system.

Electrical properties of material mixtures have attracted researchers in academia and industry to
seek a relation between overall composite properties and intrinsic properties of the constituents
and their spatial arrangement inside the mixture [1]. Bergman [2] has proposed a mathematical
way of representing the effective dielectric permittivity εe of a binary mixture as a function
of permittivities of its constituents, εm and εi, and an integral equation, which includes the
geometrical contributions. This theory is called the spectral density representation. Milton [3]
gave the corrections, whereas Golden and Papanicolaou [4] presented the rigorous derivation
for the spectral representation. The permittivity εe of a mixture is expressed as follows in the
spectral representation [5]:

εe = εm

{
1 + q A(εiε

−1
m − 1) +

∫ 1

0+

qG(x)[(εiε
−1
m − 1)−1 + x]−1 dx

}
(1)

where q and x are the concentration of inclusions and spectral parameter, respectively, and G(x)

is the spectral density function. The constant A is related to the percolation strength, which
includes the contribution of G(0). Equation (1) can be expanded by substituting εi −ε j ≡ �i j ,
then equation (1) becomes

�emε−1
m = q A�imε−1

m +
∫ 1

0+

qG(x)�im(εm + �imx)−1 dx . (2)
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Now, multiplying both sides with εm and letting �em/�im ≡ ξ and q A ≡= ξs, we obtain

ξ = ξs + q
∫ 1

0+

G(x)(1 + ε−1
m �imx)−1 dx . (3)

Here, we call ξ the ‘scaled permittivity’ and ξs the percolation strength as defined earlier.
The mathematical properties of G, q and ξs are expressed in the literature [5]; here
ξs + q

∫ 1
0+ G(x) dx = 1 and

∫ 1
0+ xG(x) dx = q(1 − q)d−1, where d is the dimensionality

of the system. In view of equation (3), the dielectric relaxation expression for a process with
single relaxation time τ is expressed as [6–8]

ε(ıω) = ε∞ + �ε(1 + ıωτ)−1 (4)

where ε∞, �ε and ω are the permittivity at optical frequencies (ω → ∞), dielectric strength
and angular frequency respectively. If there exists a continuous relaxation with a distribution,
equation (4) becomes

ε(ıω) = ε∞ + �ε

∫ ∞

0
G(τ )(1 + ıωτ)−1 dτ (5)

where G(τ ) is the distribution function of the relaxation times, and the static dielectric
permittivity εs is defined as ε∞ + �ε

∫ ∞
0 G(τ ) dτ = εs. Observe the similarities between

equations (3) and (5). Although the resemblance between the two equations appears
superficial, when the Clausius–Mossotti [6, 8] expression is taken into consideration, then the
frequency dependent properties of dielectrics can in fact be written as a dynamic response
of dipole units embedded in a background medium εm, concluding a dielectric mixture
approach with inclusions as dipole units. Consequently, interfacial polarization observed
in dielectric mixtures can be used to understand the structure–property relationship in physics
of dielectrics [9].

There are couple of expressions that are extensively used in the dielectric data analysis,
e.g. Havriliak–Negami [10], Davidson–Cole [11], and Cole–Cole [12], which have known
distribution functions G(τ ) [7]. In addition, there exists a vast literature on dielectric data
analysis [7, 13]. The total polarizability of a material is given as ε(ω → 0); therefore,
ε∞ + �ε = εs, which is actually similar to the definitions and properties of G(x) and ξs,
which can be obtained by converting polarizations to fractional polarizations, which results by
dividing both sides by εs. As a consequence, we can complete the derivation and the hypothesis
about the relation between the dielectric relaxation and two-component dielectric mixtures as
the relationship between various parameters in both representations, ε∞ε−1

s ⇔ ξs, �εε−1
s ⇔ q

and G(x) ⇔ G(τ ) and ω ⇔ � ≡ ε−1
m �im, where � is the scaled frequency of the mixture

system.
Due to the similarities between equations (3) and (5), and the commutability of various

parameters, one can express a general ‘scaled’ dielectric mixture formula as in the dielectric
dispersions, i.e. the Havriliak–Negami expression [10],

ξ(�) = ξs + q[1 + (� x)α]−β. (6)

As a result the dielectric permittivity εe of the mixture then becomes

εe = εm + �im{ξs + q[1 + (� x)α]−β}. (7)

Yet the scaled permittivity notation can somewhat be used to calculate the time-domain
dielectric mixture relations by using an inverse transform as in the case of dielectric relation
theory, i.e. the relationship between the response function and the dielectric susceptibility. As
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a note, one more resemblance between the two representations expressed by the Havriliak–
Negami expression is that it yields the Maxwell–Garnett equation [14], which formulates the
dielectric permittivity of a mixture with spherical inclusions (d = 3), while in the dielectric
relaxation form it results in the simple Debye relaxation in equation (4), when α = β = 1,
ξs ≈ 0 and x = (1 − q)d−1. Similarly for the Clausius–Mossotti expression, α = β = 1, and
the spectral parameter localizes at 3−1; q becomes the number density of dipoles.

In this letter, it is ‘described how’ the dielectric relaxation phenomenon and expressions
developed thereof for analysing dielectric dispersions can be employed to investigate the
topological description or spectral density functions of two-component composites. Once
the data are transformed to the scaled permittivity notation as shown in equations (3) or (6),
the existing dielectric relaxation data analysis tools can in fact be readily applied; there exist
many dispersion expressions in the literature. Finally, it can be inferred that even pure one-
component materials can also be expressed in terms of scaled permittivity notation, wherein
the smallest parts of the material are embedded in vacuum εm = 1. In such a case the spectral
density function would be indicative of the structure of the material and its parts, which in turn
can be valuable to calculate the local fields [8] and interaction energies [15].

I thank Mr Rajeev Singh for fruitful discussion and for valuable comments while preparing
this letter.
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